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1 The Metric Entropy Method for Function Spaces

1.1 Recap: controlling complexity via chaining

Last time, we were discussing the metric entropy method for obtaining bounds on empirical
processes. We have a metric space (T, p), and we want to control

E [sup X9:| or E [sup |X9|] ,
0eT 0eT
where Xy is usually mean 0 and sub-Gaussian. We introduced the metric entropy is
log N(e;T, p), where N(e;T,p) = inf{N : |T;| = N,T; is an e-cover} is the e-covering
number.
We had the one step discretization bound given by the maximal inequality

E [sup |X9]] Sinfoy/log(N(e; T, p) + E
oeT €

sup |Xp — Xg]
p(6,0)<e

We introduced the condition of a process to be sG(p):
A(Xyp—X5) A=
Ele® 070 < exp ?P(Qﬁ) o).
This condition allowed us to use the chaining bound

D
E [sup\Xg@ Sinfa/ Vieg N(w; T, p)du + E
0T € €

sup |X9 — X§|
p(0,,0<e

Last time, we discussed examples where T C R%. We let Xy = (¢,0) or Xy = (W, 0)
to get bounds on the Rademacher/Gaussian complexity of Euclidean sets. Today, we will
discuss examples where T' = F C LP for 1 < p < oo is a function space. If we let

R 1 o
Xo=—Y ef(Z) or,Xg = > (f(Z) —E[f(Z),

n “ X
=1 =1



then this gives us information about the Rademacher/Gaussian complexity of function
spaces.

1.2 One step discretization and chaining bounds for Rademacher com-
plexity of function classes

Recall that if [mcF C LY(P) and ¢; Y Unif({£1}), then we defined the Rademacher
complexity of function class as

Rn(F) :==E. x |sup

i Spees

- EX[R(.F(Xlzn)/n I,

where we can think of this as the expectation of the empirical Rademacher complexity,

Z&f

R(F(X1:n)/n) = Ee lsup )| | X1 n] )

where
F@in) = (F@1),. ., f(@n)) : f € F} CR™.

Recall that VC theory tells us that when the value of f is binary, F(z1.,) is a finite set.
Then we can use the maximal inequality.
This lecture, we will control this using the metric entropy method. Rewrite

R(F(w1:n)/n) = 7 [SHPPQI]

where

= \}ﬁ Z eif(x;).
i=1

Hoeffding’s inequality tells us that Xy ~sG(y/2 Y0 f(2:)?).
To apply Dudley’s entropy intergral bound on E[supger | Xg|], we need

1. A metric p on F,
2. X to be a sub-Gaussian process with respect to p,
3. An upper bound for N(u;F, p),

4. (Optional) An upper bound for the discretization error.



1.3 Useful metrics on F C L'(P)

Here are four useful metrics

(a) L?(PP) metric:
I = 9l = [ (@) ~ of@))? aB(a).

(b) L* metric: If suppP = X, then

|f = gl = sup |f(z) — g(=)].
rEX

(c) L%*(P,) metric (given z1.,):

n

1= 9lBaqe,) = [ (7(0) = g(a))? dBale) = 3 3 (7(ws) — o)

i=1
We can make this a random metric by using Xj.,,.
This is equivalent to || - |2 on F(x1.,)/v/n C R™. Recall that

F(@rn/Vn) = {7 (f(21),..., f(wn)) ER": f € F}.
Then if f(z1:n)/vn, g(@1:0)/v/10 € F(21:0) /1,5

n

1 (@1) /v = g(1:0) /0|13 = % > (fli) = glxa))*:

i=1

(d) Parametric metric: If F = {fp : § € T C R?}, a metric p on T induces a metric p on
F by

p(f07 fg) = 10(07 9)
Here are the relationships between these metrics:

e For any measure P, ||f — g|lp < ||f — ¢//o. In particular, this says that ||f — g||p, <
If = glloo for all zy.,.

e When F = fy: 0 € T C R%}, suppose that |fs, — fo,(x)] < T(x)p(61,62). Then
[ fo, = foull2e) < 1T 2wy p(01, 02),

Hf91 - f92”L°° < ”F”L"Op(91792)'



Example 1.1. Let F = {fy(z) = 1 —e % 2 € [0,1] : 8 € [0,1]}. Then, using Taylor
expansion and the intermediate value theorem,

[for (@) = foo ()] = |ze™*7|01 — ba]| < |2] - |61 — 6a].

This tells us that
I fo, — fooll2e) < 12l p2@p) 01 — 02

1fo, — foollzoe < |01 — 62

When z is not restricted to a bounded domain, we will not get a bound for the L* norm

We care about inequalities between metrics because they introduce inequalities between
covering numbers.

Lemma 1.1. If p1, pa are two metrics on T and p1(01,62) < p2(01,02) for all 61,05 € T,
then
N(e;T,p1) < N(&;T, p2).

As a consequence,
N(e; F,L*(P,)) < N(e; F, L™), N(e; F,L*(P)) < N(e; F, L™).
If | fo, () — fo,(2)| < T(2)p(01,02), then
N(e; F,L¥) < N(&;T,[[Pllocp),  N(esF,L¥) < N(& T, [T 2 p)-

Note that we can express this rescaling either in the metric or as a scaling factor in front
of e.

1.4 The uniform entropy bound for empirical processes

In what metrics might Xy = ﬁ o eif(X;) be a sub-Gaussian process?
E[ek(Xf*Xg) ’ X1 ] _ [ N/ V)| X1n D05 e (f(Xa)—g(X | X;. n]

[eWNVPIXinei(F(Xa)=g(X0)) | x ]

W2 /n)(f(Xi)—g(X:)?/2

| A

( 2/ L S (F(X0)~g(X0)? /2
Since 5 Y7L, (f(Xi) — g(Xz-)Q/?—Hf—gHPn <1 = gl

< /DIl



This tells us that (X ) re 7 is a sub-Gaussian process with respect to the metric [|-|| z2p,,)-
The inequalities between metrics tell us that this is also then sub-Gaussian with respect
to || - e

Now, if D =supy e [|f — gll2@,) =: [ Fllp, is the diameter,

D
< / Vlog N (u; F, L2(P,) du.
0

E |sup | X¢|
feF
Then the empirical Rademacher complexity is bounded above by

Using the change of variables u = || F||p, u,

1[Il _ B
S\/ﬁ/o Viog N(IFle, % F, L2(Ba)) d| Fle, @

F 1
- ”\)l?t/o Viog N(|Fllp,u; F, L2(Py)) du

< I Zlle, !
— Vno

When we take the expectation of the empirical Rademacher complexity and use Cauchy-
Schwarz, we get

sup \/log V(|1 Flgus 7, L2(Q) du

| Fllz (!
vnoJo

We can summarize this in the following proposition:

EF(F(X1n)/v/R)] < sup \/log N (|1 g F. L3(Q)) du.

Proposition 1.1 (Uniform entropy bound).

17l [
E[|P, — P < <
1B, Pl S Ru(F) 5 577 [

This is not in Wainwright’s textbook, but you can find it as Theorem 4.7 in A Gentle
Introduction to Empirical Process Theory and Applications by Bodhisattva Sen.

sup \/log N Flgus 7, L2(Q) du.

1.5 Examples of bounding Rademacher complexity for different covering
numbers

Example 1.2. Suppose we have log N(u) < dlog(1l + 1/u). Then

1! d
Rn(F) < \/77/0 Vdlog(l+1/u)du S \/;

5



Example 1.3. If log N(u) < 1/u, then

Rn(f)S\/lﬁ/Ol\/zduS\/lﬁ.

Example 1.4. If log N (u) < u—ld, where d > 2, then

IR

However, we can get a better bound in the last example by using the following propo-
sition.

Proposition 1.2.

1 1
SUp E[|[Py, — Plly < Ro(F) < [ Fllooinfe + / 108 N[ Fllow: F, I) du.
P &€ \/ﬁ e

How can we upper bound E, [sup;_g. <| Yo e(f(Xy) — g(X5))]]?7 We know that

we can bound
n

E, sup Z&:(f(Xz‘) - Q(Xz‘))|] < Vne.

| f—gllLoo <e i=1

If we use this bound, then when log N (u) < ﬁ with d > 2, we get

1 |
) < i I -
Rn( )Nllgfe’i-i- \/’71/5 2 du.
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